ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrval GIF version

Theorem ofrval 5985
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofrval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofrval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofrval ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)

Proof of Theorem ofrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . . 6 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . . 6 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . . 6 (𝜑𝐴𝑉)
4 offval.4 . . . . . 6 (𝜑𝐵𝑊)
5 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
6 eqidd 2138 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2138 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7ofrfval 5983 . . . . 5 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥)))
98biimpa 294 . . . 4 ((𝜑𝐹𝑟 𝑅𝐺) → ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥))
10 fveq2 5414 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
11 fveq2 5414 . . . . . 6 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1210, 11breq12d 3937 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥) ↔ (𝐹𝑋)𝑅(𝐺𝑋)))
1312rspccv 2781 . . . 4 (∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥) → (𝑋𝑆 → (𝐹𝑋)𝑅(𝐺𝑋)))
149, 13syl 14 . . 3 ((𝜑𝐹𝑟 𝑅𝐺) → (𝑋𝑆 → (𝐹𝑋)𝑅(𝐺𝑋)))
15143impia 1178 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐹𝑋)𝑅(𝐺𝑋))
16 simp1 981 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝜑)
17 inss1 3291 . . . . 5 (𝐴𝐵) ⊆ 𝐴
185, 17eqsstrri 3125 . . . 4 𝑆𝐴
19 simp3 983 . . . 4 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝑆)
2018, 19sseldi 3090 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝐴)
21 ofrval.6 . . 3 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2216, 20, 21syl2anc 408 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 3292 . . . . 5 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 3125 . . . 4 𝑆𝐵
2524, 19sseldi 3090 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝐵)
26 ofrval.7 . . 3 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2716, 25, 26syl2anc 408 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐺𝑋) = 𝐷)
2815, 22, 273brtr3d 3954 1 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wral 2414  cin 3065   class class class wbr 3924   Fn wfn 5113  cfv 5118  𝑟 cofr 5974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ofr 5976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator