![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > om0 | GIF version |
Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
om0 | ⊢ (A ∈ On → (A ·𝑜 ∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4095 | . . 3 ⊢ ∅ ∈ On | |
2 | omv 5974 | . . 3 ⊢ ((A ∈ On ∧ ∅ ∈ On) → (A ·𝑜 ∅) = (rec((x ∈ V ↦ (x +𝑜 A)), ∅)‘∅)) | |
3 | 1, 2 | mpan2 401 | . 2 ⊢ (A ∈ On → (A ·𝑜 ∅) = (rec((x ∈ V ↦ (x +𝑜 A)), ∅)‘∅)) |
4 | 0ex 3875 | . . 3 ⊢ ∅ ∈ V | |
5 | 4 | rdg0 5914 | . 2 ⊢ (rec((x ∈ V ↦ (x +𝑜 A)), ∅)‘∅) = ∅ |
6 | 3, 5 | syl6eq 2085 | 1 ⊢ (A ∈ On → (A ·𝑜 ∅) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ∈ wcel 1390 Vcvv 2551 ∅c0 3218 ↦ cmpt 3809 Oncon0 4066 ‘cfv 4845 (class class class)co 5455 reccrdg 5896 +𝑜 coa 5937 ·𝑜 comu 5938 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-coll 3863 ax-sep 3866 ax-nul 3874 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-setind 4220 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-reu 2307 df-rab 2309 df-v 2553 df-sbc 2759 df-csb 2847 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-iun 3650 df-br 3756 df-opab 3810 df-mpt 3811 df-tr 3846 df-id 4021 df-iord 4069 df-on 4071 df-suc 4074 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fn 4848 df-f 4849 df-f1 4850 df-fo 4851 df-f1o 4852 df-fv 4853 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-1st 5709 df-2nd 5710 df-recs 5861 df-irdg 5897 df-oadd 5944 df-omul 5945 |
This theorem is referenced by: nnm0 5993 nnm0r 5997 |
Copyright terms: Public domain | W3C validator |