ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsuc GIF version

Theorem omsuc 6361
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem omsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-suc 4288 . . . . . . 7 suc 𝐵 = (𝐵 ∪ {𝐵})
2 iuneq1 3821 . . . . . . 7 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴))
31, 2ax-mp 5 . . . . . 6 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴)
4 iunxun 3887 . . . . . 6 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴))
53, 4eqtri 2158 . . . . 5 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴))
6 oveq2 5775 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
76oveq1d 5782 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
87iunxsng 3883 . . . . . 6 (𝐵 ∈ On → 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
98uneq2d 3225 . . . . 5 (𝐵 ∈ On → ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
105, 9syl5eq 2182 . . . 4 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
1110adantl 275 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
12 suceloni 4412 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
13 omv2 6354 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴))
1412, 13sylan2 284 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴))
15 omv2 6354 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴))
1615uneq1d 3224 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
1711, 14, 163eqtr4d 2180 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
18 omcl 6350 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
19 simpl 108 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
20 oaword1 6360 . . . 4 (((𝐴 ·o 𝐵) ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝐵) ⊆ ((𝐴 ·o 𝐵) +o 𝐴))
21 ssequn1 3241 . . . 4 ((𝐴 ·o 𝐵) ⊆ ((𝐴 ·o 𝐵) +o 𝐴) ↔ ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2220, 21sylib 121 . . 3 (((𝐴 ·o 𝐵) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2318, 19, 22syl2anc 408 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2417, 23eqtrd 2170 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cun 3064  wss 3066  {csn 3522   ciun 3808  Oncon0 4280  suc csuc 4282  (class class class)co 5767   +o coa 6303   ·o comu 6304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311
This theorem is referenced by:  onmsuc  6362
  Copyright terms: Public domain W3C validator