Step | Hyp | Ref
| Expression |
1 | | ssrab2 3019 |
. . . . . 6
⊢ {z ∈ {∅}
∣ φ} ⊆
{∅} |
2 | | ordtriexmidlem 4208 |
. . . . . . 7
⊢ {z ∈ {∅}
∣ φ} ∈ On |
3 | | sseq1 2960 |
. . . . . . . . 9
⊢ (x = {z ∈ {∅} ∣ φ} → (x ⊆ {∅} ↔ {z ∈ {∅}
∣ φ} ⊆
{∅})) |
4 | | suceq 4105 |
. . . . . . . . . 10
⊢ (x = {z ∈ {∅} ∣ φ} → suc x = suc {z ∈ {∅} ∣ φ}) |
5 | 4 | sseq1d 2966 |
. . . . . . . . 9
⊢ (x = {z ∈ {∅} ∣ φ} → (suc x ⊆ suc {∅} ↔ suc {z ∈ {∅}
∣ φ} ⊆ suc
{∅})) |
6 | 3, 5 | imbi12d 223 |
. . . . . . . 8
⊢ (x = {z ∈ {∅} ∣ φ} → ((x ⊆ {∅} → suc x ⊆ suc {∅}) ↔ ({z ∈ {∅}
∣ φ} ⊆ {∅} → suc
{z ∈
{∅} ∣ φ} ⊆ suc
{∅}))) |
7 | | suc0 4114 |
. . . . . . . . . 10
⊢ suc
∅ = {∅} |
8 | | 0elon 4095 |
. . . . . . . . . . 11
⊢ ∅
∈ On |
9 | 8 | onsuci 4207 |
. . . . . . . . . 10
⊢ suc
∅ ∈ On |
10 | 7, 9 | eqeltrri 2108 |
. . . . . . . . 9
⊢ {∅}
∈ On |
11 | | p0ex 3930 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
12 | | eleq1 2097 |
. . . . . . . . . . . 12
⊢ (y = {∅} → (y ∈ On ↔
{∅} ∈ On)) |
13 | 12 | anbi2d 437 |
. . . . . . . . . . 11
⊢ (y = {∅} → ((x ∈ On ∧ y ∈ On) ↔ (x
∈ On ∧
{∅} ∈ On))) |
14 | | sseq2 2961 |
. . . . . . . . . . . 12
⊢ (y = {∅} → (x ⊆ y
↔ x ⊆
{∅})) |
15 | | suceq 4105 |
. . . . . . . . . . . . 13
⊢ (y = {∅} → suc y = suc {∅}) |
16 | 15 | sseq2d 2967 |
. . . . . . . . . . . 12
⊢ (y = {∅} → (suc x ⊆ suc y
↔ suc x ⊆ suc
{∅})) |
17 | 14, 16 | imbi12d 223 |
. . . . . . . . . . 11
⊢ (y = {∅} → ((x ⊆ y
→ suc x ⊆ suc y) ↔ (x
⊆ {∅} → suc x ⊆ suc
{∅}))) |
18 | 13, 17 | imbi12d 223 |
. . . . . . . . . 10
⊢ (y = {∅} → (((x ∈ On ∧ y ∈ On) → (x
⊆ y → suc x ⊆ suc y)) ↔ ((x
∈ On ∧
{∅} ∈ On) → (x ⊆ {∅} → suc x ⊆ suc {∅})))) |
19 | | onsucsssucexmid.1 |
. . . . . . . . . . 11
⊢ ∀x ∈ On ∀y ∈ On (x ⊆ y
→ suc x ⊆ suc y) |
20 | 19 | rspec2 2402 |
. . . . . . . . . 10
⊢
((x ∈ On ∧ y ∈ On) →
(x ⊆ y → suc x
⊆ suc y)) |
21 | 11, 18, 20 | vtocl 2602 |
. . . . . . . . 9
⊢
((x ∈ On ∧ {∅}
∈ On) → (x ⊆ {∅} → suc x ⊆ suc {∅})) |
22 | 10, 21 | mpan2 401 |
. . . . . . . 8
⊢ (x ∈ On →
(x ⊆ {∅} → suc x ⊆ suc {∅})) |
23 | 6, 22 | vtoclga 2613 |
. . . . . . 7
⊢
({z ∈ {∅} ∣ φ} ∈ On
→ ({z ∈ {∅} ∣ φ} ⊆ {∅} → suc {z ∈ {∅}
∣ φ} ⊆ suc
{∅})) |
24 | 2, 23 | ax-mp 7 |
. . . . . 6
⊢
({z ∈ {∅} ∣ φ} ⊆ {∅} → suc {z ∈ {∅}
∣ φ} ⊆ suc
{∅}) |
25 | 1, 24 | ax-mp 7 |
. . . . 5
⊢ suc
{z ∈
{∅} ∣ φ} ⊆ suc
{∅} |
26 | 10 | onsuci 4207 |
. . . . . . 7
⊢ suc
{∅} ∈ On |
27 | 26 | onordi 4129 |
. . . . . 6
⊢ Ord suc
{∅} |
28 | | ordelsuc 4197 |
. . . . . 6
⊢
(({z ∈ {∅} ∣ φ} ∈ On
∧ Ord suc {∅}) → ({z ∈ {∅}
∣ φ} ∈ suc {∅} ↔ suc {z ∈ {∅}
∣ φ} ⊆ suc
{∅})) |
29 | 2, 27, 28 | mp2an 402 |
. . . . 5
⊢
({z ∈ {∅} ∣ φ} ∈ suc
{∅} ↔ suc {z ∈ {∅} ∣ φ} ⊆ suc {∅}) |
30 | 25, 29 | mpbir 134 |
. . . 4
⊢ {z ∈ {∅}
∣ φ} ∈ suc {∅} |
31 | | elsucg 4107 |
. . . . 5
⊢
({z ∈ {∅} ∣ φ} ∈ On
→ ({z ∈ {∅} ∣ φ} ∈ suc
{∅} ↔ ({z ∈ {∅} ∣ φ} ∈
{∅} ∨ {z ∈ {∅}
∣ φ} =
{∅}))) |
32 | 2, 31 | ax-mp 7 |
. . . 4
⊢
({z ∈ {∅} ∣ φ} ∈ suc
{∅} ↔ ({z ∈ {∅} ∣ φ} ∈
{∅} ∨ {z ∈ {∅}
∣ φ} =
{∅})) |
33 | 30, 32 | mpbi 133 |
. . 3
⊢
({z ∈ {∅} ∣ φ} ∈
{∅} ∨ {z ∈ {∅}
∣ φ} =
{∅}) |
34 | | elsni 3391 |
. . . . 5
⊢
({z ∈ {∅} ∣ φ} ∈
{∅} → {z ∈ {∅} ∣ φ} = ∅) |
35 | | ordtriexmidlem2 4209 |
. . . . 5
⊢
({z ∈ {∅} ∣ φ} = ∅ → ¬ φ) |
36 | 34, 35 | syl 14 |
. . . 4
⊢
({z ∈ {∅} ∣ φ} ∈
{∅} → ¬ φ) |
37 | | 0ex 3875 |
. . . . 5
⊢ ∅
∈ V |
38 | | biidd 161 |
. . . . 5
⊢ (z = ∅ → (φ ↔ φ)) |
39 | 37, 38 | rabsnt 3436 |
. . . 4
⊢
({z ∈ {∅} ∣ φ} = {∅} → φ) |
40 | 36, 39 | orim12i 675 |
. . 3
⊢
(({z ∈ {∅} ∣ φ} ∈
{∅} ∨ {z ∈ {∅}
∣ φ} = {∅}) → (¬
φ ∨
φ)) |
41 | 33, 40 | ax-mp 7 |
. 2
⊢ (¬
φ ∨
φ) |
42 | | orcom 646 |
. 2
⊢ ((¬
φ ∨
φ) ↔ (φ ∨ ¬
φ)) |
43 | 41, 42 | mpbi 133 |
1
⊢ (φ ∨ ¬
φ) |