Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontr2exmid GIF version

Theorem ontr2exmid 4277
 Description: An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.)
Hypothesis
Ref Expression
ontr2exmid.1 𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
Assertion
Ref Expression
ontr2exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦,𝑧

Proof of Theorem ontr2exmid
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3052 . . . . 5 {𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅}
2 p0ex 3966 . . . . . 6 {∅} ∈ V
32prid2 3504 . . . . 5 {∅} ∈ {∅, {∅}}
4 2ordpr 4276 . . . . . . 7 Ord {∅, {∅}}
5 pp0ex 3967 . . . . . . . 8 {∅, {∅}} ∈ V
65elon 4138 . . . . . . 7 ({∅, {∅}} ∈ On ↔ Ord {∅, {∅}})
74, 6mpbir 138 . . . . . 6 {∅, {∅}} ∈ On
8 ordtriexmidlem 4272 . . . . . . . 8 {𝑤 ∈ {∅} ∣ 𝜑} ∈ On
9 ontr2exmid.1 . . . . . . . 8 𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
10 sseq1 2993 . . . . . . . . . . . . 13 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦))
1110anbi1d 446 . . . . . . . . . . . 12 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦𝑦𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧)))
12 eleq1 2116 . . . . . . . . . . . 12 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥𝑧 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))
1311, 12imbi12d 227 . . . . . . . . . . 11 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
1413ralbidv 2343 . . . . . . . . . 10 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (∀𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
1514albidv 1721 . . . . . . . . 9 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
1615rspcv 2669 . . . . . . . 8 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
178, 9, 16mp2 16 . . . . . . 7 𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)
18 sseq2 2994 . . . . . . . . . . 11 (𝑦 = {∅} → ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
19 eleq1 2116 . . . . . . . . . . 11 (𝑦 = {∅} → (𝑦𝑧 ↔ {∅} ∈ 𝑧))
2018, 19anbi12d 450 . . . . . . . . . 10 (𝑦 = {∅} → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧)))
2120imbi1d 224 . . . . . . . . 9 (𝑦 = {∅} → ((({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
2221ralbidv 2343 . . . . . . . 8 (𝑦 = {∅} → (∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
232, 22spcv 2663 . . . . . . 7 (∀𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) → ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))
2417, 23ax-mp 7 . . . . . 6 𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)
25 eleq2 2117 . . . . . . . . 9 (𝑧 = {∅, {∅}} → ({∅} ∈ 𝑧 ↔ {∅} ∈ {∅, {∅}}))
2625anbi2d 445 . . . . . . . 8 (𝑧 = {∅, {∅}} → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}})))
27 eleq2 2117 . . . . . . . 8 (𝑧 = {∅, {∅}} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}}))
2826, 27imbi12d 227 . . . . . . 7 (𝑧 = {∅, {∅}} → ((({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}})))
2928rspcv 2669 . . . . . 6 ({∅, {∅}} ∈ On → (∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}})))
307, 24, 29mp2 16 . . . . 5 (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}})
311, 3, 30mp2an 410 . . . 4 {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}}
32 elpri 3425 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}} → ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅}))
3331, 32ax-mp 7 . . 3 ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅})
34 ordtriexmidlem2 4273 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
35 0ex 3911 . . . . 5 ∅ ∈ V
36 biidd 165 . . . . 5 (𝑤 = ∅ → (𝜑𝜑))
3735, 36rabsnt 3472 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑)
3834, 37orim12i 686 . . 3 (({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅}) → (¬ 𝜑𝜑))
3933, 38ax-mp 7 . 2 𝜑𝜑)
40 orcom 657 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
4139, 40mpbi 137 1 (𝜑 ∨ ¬ 𝜑)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ∨ wo 639  ∀wal 1257   = wceq 1259   ∈ wcel 1409  ∀wral 2323  {crab 2327   ⊆ wss 2944  ∅c0 3251  {csn 3402  {cpr 3403  Ord word 4126  Oncon0 4127 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-uni 3608  df-tr 3882  df-iord 4130  df-on 4132  df-suc 4135 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator