Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbi2dv GIF version

Theorem opabbi2dv 4507
 Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2198. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1 Rel 𝐴
opabbi2dv.3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
Assertion
Ref Expression
opabbi2dv (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3 Rel 𝐴
2 opabid2 4489 . . 3 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
31, 2ax-mp 7 . 2 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴
4 opabbi2dv.3 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
54opabbidv 3846 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
63, 5syl5eqr 2128 1 (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103   = wceq 1285   ∈ wcel 1434  ⟨cop 3403  {copab 3840  Rel wrel 4370 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-opab 3842  df-xp 4371  df-rel 4372 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator