ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbidv GIF version

Theorem opabbidv 3851
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
opabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbidv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opabbidv
StepHypRef Expression
1 nfv 1437 . 2 𝑥𝜑
2 nfv 1437 . 2 𝑦𝜑
3 opabbidv.1 . 2 (𝜑 → (𝜓𝜒))
41, 2, 3opabbid 3850 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102   = wceq 1259  {copab 3845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-opab 3847
This theorem is referenced by:  opabbii  3852  csbopabg  3863  xpeq1  4387  xpeq2  4388  opabbi2dv  4513  csbcnvg  4547  resopab2  4683  cores  4852  xpcom  4892  dffn5im  5247  f1oiso2  5494  f1ocnvd  5730  ofreq  5743  f1od2  5884  sprmpt2  5888  shftfvalg  9647  shftfval  9650  2shfti  9660
  Copyright terms: Public domain W3C validator