ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opbrop GIF version

Theorem opbrop 4446
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
Hypotheses
Ref Expression
opbrop.1 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → (𝜑𝜓))
opbrop.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
Assertion
Ref Expression
opbrop (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢   𝜑,𝑥,𝑦   𝜓,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢)   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem opbrop
StepHypRef Expression
1 opbrop.1 . . . 4 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → (𝜑𝜓))
21copsex4g 4011 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑) ↔ 𝜓))
32anbi2d 445 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) ∧ 𝜓)))
4 elex 2583 . . . 4 (𝐴𝑆𝐴 ∈ V)
5 elex 2583 . . . 4 (𝐵𝑆𝐵 ∈ V)
6 opexgOLD 3992 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
74, 5, 6syl2an 277 . . 3 ((𝐴𝑆𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ V)
8 elex 2583 . . . 4 (𝐶𝑆𝐶 ∈ V)
9 elex 2583 . . . 4 (𝐷𝑆𝐷 ∈ V)
10 opexgOLD 3992 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ ∈ V)
118, 9, 10syl2an 277 . . 3 ((𝐶𝑆𝐷𝑆) → ⟨𝐶, 𝐷⟩ ∈ V)
12 eleq1 2116 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆)))
1312anbi1d 446 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆))))
14 eqeq1 2062 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩))
1514anbi1d 446 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
1615anbi1d 446 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑)))
17164exbidv 1766 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑)))
1813, 17anbi12d 450 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))))
19 eleq1 2116 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (𝑆 × 𝑆) ↔ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)))
2019anbi2d 445 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆))))
21 eqeq1 2062 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩))
2221anbi2d 445 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩)))
2322anbi1d 446 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑)))
24234exbidv 1766 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑)))
2520, 24anbi12d 450 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑))))
26 opbrop.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
2718, 25, 26brabg 4033 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑))))
287, 11, 27syl2an 277 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ 𝜑))))
29 opelxpi 4403 . . . 4 ((𝐴𝑆𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆))
30 opelxpi 4403 . . . 4 ((𝐶𝑆𝐷𝑆) → ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆))
3129, 30anim12i 325 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)))
3231biantrurd 293 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝜓 ↔ ((⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) ∧ 𝜓)))
333, 28, 323bitr4d 213 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  Vcvv 2574  cop 3405   class class class wbr 3791  {copab 3844   × cxp 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378
This theorem is referenced by:  ecopoveq  6231  oviec  6242
  Copyright terms: Public domain W3C validator