Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelco GIF version

Theorem opelco 4535
 Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
opelco (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem opelco
StepHypRef Expression
1 df-br 3793 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 opelco.1 . . 3 𝐴 ∈ V
3 opelco.2 . . 3 𝐵 ∈ V
42, 3brco 4534 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
51, 4bitr3i 179 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
 Colors of variables: wff set class Syntax hints:   ∧ wa 101   ↔ wb 102  ∃wex 1397   ∈ wcel 1409  Vcvv 2574  ⟨cop 3406   class class class wbr 3792   ∘ ccom 4377 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-co 4382 This theorem is referenced by:  dmcoss  4629  dmcosseq  4631  cotr  4734  coiun  4858  co02  4862  coi1  4864  coass  4867  fmptco  5358  dftpos4  5909
 Copyright terms: Public domain W3C validator