ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2 GIF version

Theorem opeliunxp2 4649
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1 (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 3900 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 4618 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 2464 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 4630 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 145 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelex1i 4552 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 134 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 2671 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 274 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfcv 2258 . . 3 𝑥𝐶
11 nfiu1 3813 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1211nfel2 2271 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
13 nfv 1493 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1412, 13nfbi 1553 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
15 opeq1 3675 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1615eleq1d 2186 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
17 eleq1 2180 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
18 opeliunxp2.1 . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
1918eleq2d 2187 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
2017, 19anbi12d 464 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2116, 20bibi12d 234 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
22 opeliunxp 4564 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2310, 14, 21, 22vtoclgf 2718 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
247, 9, 23pm5.21nii 678 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  Vcvv 2660  {csn 3497  cop 3500   ciun 3783   class class class wbr 3899   × cxp 4507  Rel wrel 4514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-sbc 2883  df-csb 2976  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-iun 3785  df-br 3900  df-opab 3960  df-xp 4515  df-rel 4516
This theorem is referenced by:  mpoxopn0yelv  6104  eldvap  12747
  Copyright terms: Public domain W3C validator