ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabf GIF version

Theorem opelopabf 4166
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4163 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x 𝑥𝜓
opelopabf.y 𝑦𝜒
opelopabf.1 𝐴 ∈ V
opelopabf.2 𝐵 ∈ V
opelopabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabf.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4152 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabf.1 . . 3 𝐴 ∈ V
3 nfcv 2258 . . . . 5 𝑥𝐵
4 opelopabf.x . . . . 5 𝑥𝜓
53, 4nfsbc 2902 . . . 4 𝑥[𝐵 / 𝑦]𝜓
6 opelopabf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
76sbcbidv 2939 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
85, 7sbciegf 2912 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
92, 8ax-mp 5 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓)
10 opelopabf.2 . . 3 𝐵 ∈ V
11 opelopabf.y . . . 4 𝑦𝜒
12 opelopabf.4 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
1311, 12sbciegf 2912 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓𝜒))
1410, 13ax-mp 5 . 2 ([𝐵 / 𝑦]𝜓𝜒)
151, 9, 143bitri 205 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1316  wnf 1421  wcel 1465  Vcvv 2660  [wsbc 2882  cop 3500  {copab 3958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-rex 2399  df-v 2662  df-sbc 2883  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-opab 3960
This theorem is referenced by:  pofun  4204  fmptco  5554
  Copyright terms: Public domain W3C validator