![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelresg | GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
opelresg | ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3592 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
2 | 1 | eleq1d 2151 | . 2 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷))) |
3 | 1 | eleq1d 2151 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 3 | anbi1d 453 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
5 | vex 2614 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | opelres 4666 | . 2 ⊢ (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
7 | 2, 4, 6 | vtoclbg 2669 | 1 ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 〈cop 3420 ↾ cres 4394 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2613 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-opab 3861 df-xp 4398 df-res 4404 |
This theorem is referenced by: brresg 4669 opelresi 4672 issref 4758 |
Copyright terms: Public domain | W3C validator |