ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opoe GIF version

Theorem opoe 11592
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))

Proof of Theorem opoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11570 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 11570 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 595 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 2600 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 9082 . . . . . . . . 9 2 ∈ ℤ
6 zaddcl 9094 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
76peano2zd 9176 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 + 𝑏) + 1) ∈ ℤ)
8 dvdsmul1 11515 . . . . . . . . 9 ((2 ∈ ℤ ∧ ((𝑎 + 𝑏) + 1) ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
95, 7, 8sylancr 410 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
10 zcn 9059 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
11 zcn 9059 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
12 addcl 7745 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
13 2cn 8791 . . . . . . . . . . . . . 14 2 ∈ ℂ
14 ax-1cn 7713 . . . . . . . . . . . . . 14 1 ∈ ℂ
15 adddi 7752 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑎 + 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1613, 14, 15mp3an13 1306 . . . . . . . . . . . . 13 ((𝑎 + 𝑏) ∈ ℂ → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1712, 16syl 14 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
18 adddi 7752 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1913, 18mp3an1 1302 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
2019oveq1d 5789 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
2117, 20eqtrd 2172 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
22 2t1e2 8873 . . . . . . . . . . . . 13 (2 · 1) = 2
23 df-2 8779 . . . . . . . . . . . . 13 2 = (1 + 1)
2422, 23eqtri 2160 . . . . . . . . . . . 12 (2 · 1) = (1 + 1)
2524oveq2i 5785 . . . . . . . . . . 11 (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1))
2621, 25syl6eq 2188 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)))
27 mulcl 7747 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
2813, 27mpan 420 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
29 mulcl 7747 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
3013, 29mpan 420 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
31 add4 7923 . . . . . . . . . . . 12 ((((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ)) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3214, 14, 31mpanr12 435 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3328, 30, 32syl2an 287 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3426, 33eqtrd 2172 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3510, 11, 34syl2an 287 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
369, 35breqtrd 3954 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
37 oveq12 5783 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) = (𝐴 + 𝐵))
3837breq2d 3941 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴 + 𝐵)))
3936, 38syl5ibcom 154 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4039rexlimivv 2555 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
414, 40sylbir 134 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
423, 41syl6bi 162 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4342imp 123 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
4443an4s 577 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  cc 7618  1c1 7621   + caddc 7623   · cmul 7625  2c2 8771  cz 9054  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-dvds 11494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator