![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oprabbidv | GIF version |
Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) |
Ref | Expression |
---|---|
oprabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
oprabbidv | ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1462 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1462 | . 2 ⊢ Ⅎ𝑧𝜑 | |
4 | oprabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 1, 2, 3, 4 | oprabbid 5610 | 1 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 {coprab 5565 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-oprab 5568 |
This theorem is referenced by: oprabbii 5612 mpt2eq123dva 5618 mpt2eq3dva 5621 resoprab2 5650 erovlem 6286 |
Copyright terms: Public domain | W3C validator |