![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oprabidlem | GIF version |
Description: Slight elaboration of exdistrfor 1722. A lemma for oprabid 5562. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
oprabidlem | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bndl 1440 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
2 | ax-10 1437 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
3 | dtru 4305 | . . . . . 6 ⊢ ¬ ∀𝑦 𝑦 = 𝑧 | |
4 | pm2.53 674 | . . . . . 6 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
5 | 3, 4 | mpi 15 | . . . . 5 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
6 | df-nf 1391 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
7 | 6 | albii 1400 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
8 | 5, 7 | sylibr 132 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
9 | 2, 8 | orim12i 709 | . . 3 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧)) |
10 | 1, 9 | ax-mp 7 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
11 | 10 | exdistrfor 1722 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 662 ∀wal 1283 Ⅎwnf 1390 ∃wex 1422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-setind 4282 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-v 2604 df-dif 2976 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 |
This theorem is referenced by: oprabid 5562 |
Copyright terms: Public domain | W3C validator |