ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabss GIF version

Theorem oprabss 5621
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 5584 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
2 relssdmrn 4871 . . 3 (Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
31, 2ax-mp 7 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 reldmoprab 5620 . . . 4 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
5 df-rel 4378 . . . 4 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
64, 5mpbi 143 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
7 ssv 3020 . . 3 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V
8 xpss12 4473 . . 3 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) ∧ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V) → (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V))
96, 7, 8mp2an 417 . 2 (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V)
103, 9sstri 3009 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Colors of variables: wff set class
Syntax hints:  Vcvv 2602  wss 2974   × cxp 4369  dom cdm 4371  ran crn 4372  Rel wrel 4376  {coprab 5544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-cnv 4379  df-dm 4381  df-rn 4382  df-oprab 5547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator