ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth1 GIF version

Theorem opth1 4000
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
21sneqr 3558 . . 3 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
32a1i 9 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
4 opth1.2 . . . . . . . . 9 𝐵 ∈ V
51, 4opi1 3996 . . . . . . . 8 {𝐴} ∈ ⟨𝐴, 𝐵
6 id 19 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
75, 6syl5eleq 2142 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
8 oprcl 3600 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
97, 8syl 14 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
109simpld 109 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
11 prid1g 3501 . . . . 5 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
1210, 11syl 14 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
13 eleq2 2117 . . . 4 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1412, 13syl5ibrcom 150 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
15 elsni 3420 . . . 4 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1615eqcomd 2061 . . 3 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1714, 16syl6 33 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
18 dfopg 3574 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
197, 8, 183syl 17 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
207, 19eleqtrd 2132 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 3425 . . 3 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 14 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
233, 17, 22mpjaod 648 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wo 639   = wceq 1259  wcel 1409  Vcvv 2574  {csn 3402  {cpr 3403  cop 3405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411
This theorem is referenced by:  opth  4001  dmsnopg  4819  funcnvsn  4972  oprabid  5564
  Copyright terms: Public domain W3C validator