ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orass GIF version

Theorem orass 717
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orass
StepHypRef Expression
1 orcom 680 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑𝜓)))
2 or12 716 . 2 ((𝜒 ∨ (𝜑𝜓)) ↔ (𝜑 ∨ (𝜒𝜓)))
3 orcom 680 . . 3 ((𝜒𝜓) ↔ (𝜓𝜒))
43orbi2i 712 . 2 ((𝜑 ∨ (𝜒𝜓)) ↔ (𝜑 ∨ (𝜓𝜒)))
51, 2, 43bitri 204 1 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 103  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm2.31  718  pm2.32  719  or32  720  or4  721  3orass  923  dveeq2  1737  dveeq2or  1738  sbequilem  1760  dvelimALT  1928  dvelimfv  1929  dvelimor  1936  unass  3130  ltxr  8927  lcmass  10611
  Copyright terms: Public domain W3C validator