![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orcd | GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 20-Sep-2007.) |
Ref | Expression |
---|---|
orcd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orcd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | orc 666 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 662 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: olcd 686 pm2.47 692 orim12i 709 dcor 877 undif3ss 3241 reg2exmidlema 4305 acexmidlem1 5559 poxp 5904 nntri2or2 6162 nnm00 6189 ssfilem 6431 diffitest 6443 fientri3 6459 unsnfidcex 6464 unsnfidcel 6465 nqprloc 6849 mullocprlem 6874 recexprlemloc 6935 ltxrlt 7297 zmulcl 8537 nn0lt2 8562 zeo 8585 xrltso 8999 apbtwnz 9408 expnegap0 9633 |
Copyright terms: Public domain | W3C validator |