![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordelss | GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4141 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 3892 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 122 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 277 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ⊆ wss 2974 Tr wtr 3883 Ord word 4125 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-in 2980 df-ss 2987 df-uni 3610 df-tr 3884 df-iord 4129 |
This theorem is referenced by: ordelord 4144 onelss 4150 ordsuc 4314 smores3 5942 tfrlem1 5957 tfrlemisucaccv 5974 tfrlemiubacc 5979 tfr1onlemsucaccv 5990 tfr1onlemubacc 5995 tfrcllemsucaccv 6003 tfrcllemubacc 6008 nntri1 6140 nnsseleq 6145 fict 6403 infnfi 6429 ordiso2 6505 sizeinfuni 9801 |
Copyright terms: Public domain | W3C validator |