![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordpwsucss | GIF version |
Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of (𝒫 A ∩ On) as another possible definition of successor, which would be equivalent to df-suc 4074 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if A ∈ On then both ∪ suc A = A (onunisuci 4135) and ∪ {x ∈ On ∣ x ⊆ A} = A (onuniss2 4203). Constructively (𝒫 A ∩ On) and suc A cannot be shown to be equivalent (as proved at ordpwsucexmid 4246). (Contributed by Jim Kingdon, 21-Jul-2019.) |
Ref | Expression |
---|---|
ordpwsucss | ⊢ (Ord A → suc A ⊆ (𝒫 A ∩ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 4241 | . . . . 5 ⊢ (Ord A ↔ Ord suc A) | |
2 | ordelon 4086 | . . . . . 6 ⊢ ((Ord suc A ∧ x ∈ suc A) → x ∈ On) | |
3 | 2 | ex 108 | . . . . 5 ⊢ (Ord suc A → (x ∈ suc A → x ∈ On)) |
4 | 1, 3 | sylbi 114 | . . . 4 ⊢ (Ord A → (x ∈ suc A → x ∈ On)) |
5 | ordtr 4081 | . . . . 5 ⊢ (Ord A → Tr A) | |
6 | trsucss 4126 | . . . . 5 ⊢ (Tr A → (x ∈ suc A → x ⊆ A)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (Ord A → (x ∈ suc A → x ⊆ A)) |
8 | 4, 7 | jcad 291 | . . 3 ⊢ (Ord A → (x ∈ suc A → (x ∈ On ∧ x ⊆ A))) |
9 | elin 3120 | . . . 4 ⊢ (x ∈ (𝒫 A ∩ On) ↔ (x ∈ 𝒫 A ∧ x ∈ On)) | |
10 | selpw 3358 | . . . . 5 ⊢ (x ∈ 𝒫 A ↔ x ⊆ A) | |
11 | 10 | anbi2ci 432 | . . . 4 ⊢ ((x ∈ 𝒫 A ∧ x ∈ On) ↔ (x ∈ On ∧ x ⊆ A)) |
12 | 9, 11 | bitri 173 | . . 3 ⊢ (x ∈ (𝒫 A ∩ On) ↔ (x ∈ On ∧ x ⊆ A)) |
13 | 8, 12 | syl6ibr 151 | . 2 ⊢ (Ord A → (x ∈ suc A → x ∈ (𝒫 A ∩ On))) |
14 | 13 | ssrdv 2945 | 1 ⊢ (Ord A → suc A ⊆ (𝒫 A ∩ On)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1390 ∩ cin 2910 ⊆ wss 2911 𝒫 cpw 3351 Tr wtr 3845 Ord word 4065 Oncon0 4066 suc csuc 4068 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-setind 4220 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-uni 3572 df-tr 3846 df-iord 4069 df-on 4071 df-suc 4074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |