ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucss GIF version

Theorem ordpwsucss 4477
Description: The collection of ordinals in the power class of an ordinal is a superset of its successor.

We can think of (𝒫 𝐴 ∩ On) as another possible definition of successor, which would be equivalent to df-suc 4288 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if 𝐴 ∈ On then both suc 𝐴 = 𝐴 (onunisuci 4349) and {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴 (onuniss2 4423).

Constructively (𝒫 𝐴 ∩ On) and suc 𝐴 cannot be shown to be equivalent (as proved at ordpwsucexmid 4480). (Contributed by Jim Kingdon, 21-Jul-2019.)

Assertion
Ref Expression
ordpwsucss (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On))

Proof of Theorem ordpwsucss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordsuc 4473 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
2 ordelon 4300 . . . . . 6 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ∈ On)
32ex 114 . . . . 5 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
41, 3sylbi 120 . . . 4 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
5 ordtr 4295 . . . . 5 (Ord 𝐴 → Tr 𝐴)
6 trsucss 4340 . . . . 5 (Tr 𝐴 → (𝑥 ∈ suc 𝐴𝑥𝐴))
75, 6syl 14 . . . 4 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥𝐴))
84, 7jcad 305 . . 3 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥𝐴)))
9 elin 3254 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ On))
10 velpw 3512 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1110anbi2ci 454 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
129, 11bitri 183 . . 3 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
138, 12syl6ibr 161 . 2 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ (𝒫 𝐴 ∩ On)))
1413ssrdv 3098 1 (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  cin 3065  wss 3066  𝒫 cpw 3505  Tr wtr 4021  Ord word 4279  Oncon0 4280  suc csuc 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator