Step | Hyp | Ref
| Expression |
1 | | ordtriexmidlem 4208 |
. . . . 5
⊢ {w ∈ {∅}
∣ φ} ∈ On |
2 | 1 | elexi 2561 |
. . . 4
⊢ {w ∈ {∅}
∣ φ} ∈ V |
3 | 2 | sucid 4120 |
. . 3
⊢ {w ∈ {∅}
∣ φ} ∈ suc {w ∈ {∅} ∣ φ} |
4 | 1 | onsuci 4207 |
. . . 4
⊢ suc
{w ∈
{∅} ∣ φ} ∈ On |
5 | | suc0 4114 |
. . . . 5
⊢ suc
∅ = {∅} |
6 | | 0elon 4095 |
. . . . . 6
⊢ ∅
∈ On |
7 | 6 | onsuci 4207 |
. . . . 5
⊢ suc
∅ ∈ On |
8 | 5, 7 | eqeltrri 2108 |
. . . 4
⊢ {∅}
∈ On |
9 | | eleq1 2097 |
. . . . . . 7
⊢ (x = {w ∈ {∅} ∣ φ} → (x ∈ On ↔
{w ∈
{∅} ∣ φ} ∈ On)) |
10 | 9 | 3anbi1d 1210 |
. . . . . 6
⊢ (x = {w ∈ {∅} ∣ φ} → ((x ∈ On ∧ suc {w ∈ {∅} ∣ φ} ∈ On
∧ {∅} ∈ On) ↔ ({w ∈ {∅}
∣ φ} ∈ On ∧ suc
{w ∈
{∅} ∣ φ} ∈ On ∧ {∅}
∈ On))) |
11 | | eleq1 2097 |
. . . . . . 7
⊢ (x = {w ∈ {∅} ∣ φ} → (x ∈ suc {w ∈ {∅}
∣ φ} ↔ {w ∈ {∅}
∣ φ} ∈ suc {w ∈ {∅} ∣ φ})) |
12 | | eleq1 2097 |
. . . . . . . 8
⊢ (x = {w ∈ {∅} ∣ φ} → (x ∈ {∅}
↔ {w ∈ {∅} ∣ φ} ∈
{∅})) |
13 | 12 | orbi1d 704 |
. . . . . . 7
⊢ (x = {w ∈ {∅} ∣ φ} → ((x ∈ {∅}
∨ {∅} ∈ suc {w ∈ {∅} ∣ φ}) ↔ ({w ∈ {∅}
∣ φ} ∈ {∅} ∨
{∅} ∈ suc {w ∈ {∅}
∣ φ}))) |
14 | 11, 13 | imbi12d 223 |
. . . . . 6
⊢ (x = {w ∈ {∅} ∣ φ} → ((x ∈ suc {w ∈ {∅}
∣ φ} → (x ∈ {∅}
∨ {∅} ∈ suc {w ∈ {∅} ∣ φ})) ↔ ({w ∈ {∅}
∣ φ} ∈ suc {w ∈ {∅} ∣ φ} → ({w ∈ {∅}
∣ φ} ∈ {∅} ∨
{∅} ∈ suc {w ∈ {∅}
∣ φ})))) |
15 | 10, 14 | imbi12d 223 |
. . . . 5
⊢ (x = {w ∈ {∅} ∣ φ} → (((x ∈ On ∧ suc {w ∈ {∅} ∣ φ} ∈ On
∧ {∅} ∈ On) → (x
∈ suc {w
∈ {∅} ∣ φ} → (x ∈ {∅}
∨ {∅} ∈ suc {w ∈ {∅} ∣ φ}))) ↔ (({w ∈ {∅}
∣ φ} ∈ On ∧ suc
{w ∈
{∅} ∣ φ} ∈ On ∧ {∅}
∈ On) → ({w ∈ {∅}
∣ φ} ∈ suc {w ∈ {∅} ∣ φ} → ({w ∈ {∅}
∣ φ} ∈ {∅} ∨
{∅} ∈ suc {w ∈ {∅}
∣ φ}))))) |
16 | 4 | elexi 2561 |
. . . . . 6
⊢ suc
{w ∈
{∅} ∣ φ} ∈ V |
17 | | eleq1 2097 |
. . . . . . . 8
⊢ (y = suc {w ∈ {∅} ∣ φ} → (y ∈ On ↔ suc
{w ∈
{∅} ∣ φ} ∈ On)) |
18 | 17 | 3anbi2d 1211 |
. . . . . . 7
⊢ (y = suc {w ∈ {∅} ∣ φ} → ((x ∈ On ∧ y ∈ On ∧ {∅}
∈ On) ↔ (x ∈ On ∧ suc {w ∈ {∅} ∣ φ} ∈ On
∧ {∅} ∈ On))) |
19 | | eleq2 2098 |
. . . . . . . 8
⊢ (y = suc {w ∈ {∅} ∣ φ} → (x ∈ y ↔ x ∈ suc {w ∈ {∅} ∣ φ})) |
20 | | eleq2 2098 |
. . . . . . . . 9
⊢ (y = suc {w ∈ {∅} ∣ φ} → ({∅} ∈ y ↔
{∅} ∈ suc {w ∈ {∅}
∣ φ})) |
21 | 20 | orbi2d 703 |
. . . . . . . 8
⊢ (y = suc {w ∈ {∅} ∣ φ} → ((x ∈ {∅}
∨ {∅} ∈ y) ↔
(x ∈
{∅} ∨ {∅} ∈ suc {w ∈ {∅} ∣ φ}))) |
22 | 19, 21 | imbi12d 223 |
. . . . . . 7
⊢ (y = suc {w ∈ {∅} ∣ φ} → ((x ∈ y → (x
∈ {∅}
∨ {∅} ∈ y)) ↔ (x
∈ suc {w
∈ {∅} ∣ φ} → (x ∈ {∅}
∨ {∅} ∈ suc {w ∈ {∅} ∣ φ})))) |
23 | 18, 22 | imbi12d 223 |
. . . . . 6
⊢ (y = suc {w ∈ {∅} ∣ φ} → (((x ∈ On ∧ y ∈ On ∧ {∅}
∈ On) → (x ∈ y → (x
∈ {∅}
∨ {∅} ∈ y))) ↔ ((x
∈ On ∧ suc
{w ∈
{∅} ∣ φ} ∈ On ∧ {∅}
∈ On) → (x ∈ suc {w ∈ {∅}
∣ φ} → (x ∈ {∅}
∨ {∅} ∈ suc {w ∈ {∅} ∣ φ}))))) |
24 | | p0ex 3930 |
. . . . . . 7
⊢ {∅}
∈ V |
25 | | eleq1 2097 |
. . . . . . . . 9
⊢ (z = {∅} → (z ∈ On ↔
{∅} ∈ On)) |
26 | 25 | 3anbi3d 1212 |
. . . . . . . 8
⊢ (z = {∅} → ((x ∈ On ∧ y ∈ On ∧ z ∈ On) ↔
(x ∈ On
∧ y ∈ On ∧ {∅}
∈ On))) |
27 | | eleq2 2098 |
. . . . . . . . . 10
⊢ (z = {∅} → (x ∈ z ↔ x ∈ {∅})) |
28 | | eleq1 2097 |
. . . . . . . . . 10
⊢ (z = {∅} → (z ∈ y ↔ {∅} ∈ y)) |
29 | 27, 28 | orbi12d 706 |
. . . . . . . . 9
⊢ (z = {∅} → ((x ∈ z ∨ z ∈ y) ↔ (x
∈ {∅}
∨ {∅} ∈ y))) |
30 | 29 | imbi2d 219 |
. . . . . . . 8
⊢ (z = {∅} → ((x ∈ y → (x
∈ z ∨ z ∈ y)) ↔
(x ∈
y → (x ∈ {∅}
∨ {∅} ∈ y)))) |
31 | 26, 30 | imbi12d 223 |
. . . . . . 7
⊢ (z = {∅} → (((x ∈ On ∧ y ∈ On ∧ z ∈ On) →
(x ∈
y → (x ∈ z ∨ z ∈ y))) ↔ ((x
∈ On ∧
y ∈ On
∧ {∅} ∈ On) → (x
∈ y
→ (x ∈ {∅} ∨
{∅} ∈ y))))) |
32 | | ordsoexmid.1 |
. . . . . . . . . . 11
⊢ E Or
On |
33 | | df-iso 4025 |
. . . . . . . . . . 11
⊢ ( E Or On
↔ ( E Po On ∧ ∀x ∈ On ∀y ∈ On ∀z ∈ On (x E
y → (x E z ∨ z E y)))) |
34 | 32, 33 | mpbi 133 |
. . . . . . . . . 10
⊢ ( E Po On
∧ ∀x ∈ On ∀y ∈ On ∀z ∈ On (x E
y → (x E z ∨ z E y))) |
35 | 34 | simpri 106 |
. . . . . . . . 9
⊢ ∀x ∈ On ∀y ∈ On ∀z ∈ On (x E
y → (x E z ∨ z E y)) |
36 | | epel 4020 |
. . . . . . . . . . . 12
⊢ (x E y ↔
x ∈
y) |
37 | | epel 4020 |
. . . . . . . . . . . . 13
⊢ (x E z ↔
x ∈
z) |
38 | | epel 4020 |
. . . . . . . . . . . . 13
⊢ (z E y ↔
z ∈
y) |
39 | 37, 38 | orbi12i 680 |
. . . . . . . . . . . 12
⊢
((x E z ∨ z E y) ↔
(x ∈
z ∨
z ∈
y)) |
40 | 36, 39 | imbi12i 228 |
. . . . . . . . . . 11
⊢
((x E y → (x E
z ∨
z E y))
↔ (x ∈ y →
(x ∈
z ∨
z ∈
y))) |
41 | 40 | 2ralbii 2326 |
. . . . . . . . . 10
⊢ (∀y ∈ On ∀z ∈ On (x E y →
(x E z
∨ z E
y)) ↔ ∀y ∈ On ∀z ∈ On (x ∈ y → (x
∈ z ∨ z ∈ y))) |
42 | 41 | ralbii 2324 |
. . . . . . . . 9
⊢ (∀x ∈ On ∀y ∈ On ∀z ∈ On (x E
y → (x E z ∨ z E y)) ↔ ∀x ∈ On ∀y ∈ On ∀z ∈ On (x ∈ y →
(x ∈
z ∨
z ∈
y))) |
43 | 35, 42 | mpbi 133 |
. . . . . . . 8
⊢ ∀x ∈ On ∀y ∈ On ∀z ∈ On (x ∈ y →
(x ∈
z ∨
z ∈
y)) |
44 | 43 | rspec3 2403 |
. . . . . . 7
⊢
((x ∈ On ∧ y ∈ On ∧ z ∈ On) → (x
∈ y
→ (x ∈ z ∨ z ∈ y))) |
45 | 24, 31, 44 | vtocl 2602 |
. . . . . 6
⊢
((x ∈ On ∧ y ∈ On ∧ {∅} ∈ On)
→ (x ∈ y →
(x ∈
{∅} ∨ {∅} ∈ y))) |
46 | 16, 23, 45 | vtocl 2602 |
. . . . 5
⊢
((x ∈ On ∧ suc
{w ∈
{∅} ∣ φ} ∈ On ∧ {∅}
∈ On) → (x ∈ suc {w ∈ {∅}
∣ φ} → (x ∈ {∅}
∨ {∅} ∈ suc {w ∈ {∅} ∣ φ}))) |
47 | 2, 15, 46 | vtocl 2602 |
. . . 4
⊢
(({w ∈ {∅} ∣ φ} ∈ On
∧ suc {w
∈ {∅} ∣ φ} ∈ On
∧ {∅} ∈ On) → ({w ∈ {∅}
∣ φ} ∈ suc {w ∈ {∅} ∣ φ} → ({w ∈ {∅}
∣ φ} ∈ {∅} ∨
{∅} ∈ suc {w ∈ {∅}
∣ φ}))) |
48 | 1, 4, 8, 47 | mp3an 1231 |
. . 3
⊢
({w ∈ {∅} ∣ φ} ∈ suc
{w ∈
{∅} ∣ φ} → ({w ∈ {∅}
∣ φ} ∈ {∅} ∨
{∅} ∈ suc {w ∈ {∅}
∣ φ})) |
49 | 2 | elsnc 3390 |
. . . . 5
⊢
({w ∈ {∅} ∣ φ} ∈
{∅} ↔ {w ∈ {∅} ∣ φ} = ∅) |
50 | | ordtriexmidlem2 4209 |
. . . . 5
⊢
({w ∈ {∅} ∣ φ} = ∅ → ¬ φ) |
51 | 49, 50 | sylbi 114 |
. . . 4
⊢
({w ∈ {∅} ∣ φ} ∈
{∅} → ¬ φ) |
52 | | elirr 4224 |
. . . . . . 7
⊢ ¬
{∅} ∈ {∅} |
53 | | elrabi 2689 |
. . . . . . 7
⊢
({∅} ∈ {w ∈ {∅}
∣ φ} → {∅} ∈ {∅}) |
54 | 52, 53 | mto 587 |
. . . . . 6
⊢ ¬
{∅} ∈ {w ∈ {∅}
∣ φ} |
55 | | elsuci 4106 |
. . . . . . 7
⊢
({∅} ∈ suc {w ∈ {∅}
∣ φ} → ({∅} ∈ {w ∈ {∅} ∣ φ} ∨
{∅} = {w ∈ {∅} ∣ φ})) |
56 | 55 | ord 642 |
. . . . . 6
⊢
({∅} ∈ suc {w ∈ {∅}
∣ φ} → (¬ {∅}
∈ {w
∈ {∅} ∣ φ} → {∅} = {w ∈ {∅}
∣ φ})) |
57 | 54, 56 | mpi 15 |
. . . . 5
⊢
({∅} ∈ suc {w ∈ {∅}
∣ φ} → {∅} = {w ∈ {∅}
∣ φ}) |
58 | | 0ex 3875 |
. . . . . . 7
⊢ ∅
∈ V |
59 | | biidd 161 |
. . . . . . 7
⊢ (w = ∅ → (φ ↔ φ)) |
60 | 58, 59 | rabsnt 3436 |
. . . . . 6
⊢
({w ∈ {∅} ∣ φ} = {∅} → φ) |
61 | 60 | eqcoms 2040 |
. . . . 5
⊢
({∅} = {w ∈ {∅} ∣ φ} → φ) |
62 | 57, 61 | syl 14 |
. . . 4
⊢
({∅} ∈ suc {w ∈ {∅}
∣ φ} → φ) |
63 | 51, 62 | orim12i 675 |
. . 3
⊢
(({w ∈ {∅} ∣ φ} ∈
{∅} ∨ {∅} ∈ suc {w ∈ {∅} ∣ φ}) → (¬ φ ∨ φ)) |
64 | 3, 48, 63 | mp2b 8 |
. 2
⊢ (¬
φ ∨
φ) |
65 | | orcom 646 |
. 2
⊢ ((¬
φ ∨
φ) ↔ (φ ∨ ¬
φ)) |
66 | 64, 65 | mpbi 133 |
1
⊢ (φ ∨ ¬
φ) |