ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim1i GIF version

Theorem orim1i 710
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim1i ((𝜑𝜒) → (𝜓𝜒))

Proof of Theorem orim1i
StepHypRef Expression
1 orim1i.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜒𝜒)
31, 2orim12i 709 1 ((𝜑𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.34  1615  dveeq2or  1738  sbequilem  1760  sbequi  1761  dvelimALT  1928  dvelimfv  1929  dvelimor  1936  r19.45av  2515  acexmidlemcase  5538  nnm1nn0  8396
  Copyright terms: Public domain W3C validator