![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim1i | GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim1i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | orim12i 709 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 662 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 19.34 1615 dveeq2or 1738 sbequilem 1760 sbequi 1761 dvelimALT 1928 dvelimfv 1929 dvelimor 1936 r19.45av 2515 acexmidlemcase 5538 nnm1nn0 8396 |
Copyright terms: Public domain | W3C validator |