![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > otelxp1 | GIF version |
Description: The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) |
Ref | Expression |
---|---|
otelxp1 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp1 4423 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
2 | opelxp1 4423 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) → 𝐴 ∈ 𝑅) | |
3 | 1, 2 | syl 14 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 〈cop 3419 × cxp 4389 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-opab 3860 df-xp 4397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |