ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq2 GIF version

Theorem oteq2 3587
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 3578 . . 3 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
21opeq1d 3583 . 2 (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐴⟩, 𝐷⟩ = ⟨⟨𝐶, 𝐵⟩, 𝐷⟩)
3 df-ot 3413 . 2 𝐶, 𝐴, 𝐷⟩ = ⟨⟨𝐶, 𝐴⟩, 𝐷
4 df-ot 3413 . 2 𝐶, 𝐵, 𝐷⟩ = ⟨⟨𝐶, 𝐵⟩, 𝐷
52, 3, 43eqtr4g 2113 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1259  cop 3406  cotp 3407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-ot 3413
This theorem is referenced by:  oteq2d  3590
  Copyright terms: Public domain W3C validator