ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otth GIF version

Theorem otth 4006
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1 𝐴 ∈ V
otth.2 𝐵 ∈ V
otth.3 𝑅 ∈ V
Assertion
Ref Expression
otth (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))

Proof of Theorem otth
StepHypRef Expression
1 df-ot 3412 . . 3 𝐴, 𝐵, 𝑅⟩ = ⟨⟨𝐴, 𝐵⟩, 𝑅
2 df-ot 3412 . . 3 𝐶, 𝐷, 𝑆⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆
31, 2eqeq12i 2069 . 2 (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩)
4 otth.1 . . 3 𝐴 ∈ V
5 otth.2 . . 3 𝐵 ∈ V
6 otth.3 . . 3 𝑅 ∈ V
74, 5, 6otth2 4005 . 2 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
83, 7bitri 177 1 (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
Colors of variables: wff set class
Syntax hints:  wb 102  w3a 896   = wceq 1259  wcel 1409  Vcvv 2574  cop 3405  cotp 3406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-ot 3412
This theorem is referenced by:  euotd  4018
  Copyright terms: Public domain W3C validator