ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov GIF version

Theorem ov 5647
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ov.1 𝐶 ∈ V
ov.2 (𝑥 = 𝐴 → (𝜑𝜓))
ov.3 (𝑦 = 𝐵 → (𝜓𝜒))
ov.4 (𝑧 = 𝐶 → (𝜒𝜃))
ov.5 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
ov.6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ov ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ov
StepHypRef Expression
1 df-ov 5542 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ov.6 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
32fveq1i 5206 . . . . 5 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2076 . . . 4 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
54eqeq1i 2063 . . 3 ((𝐴𝐹𝐵) = 𝐶 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶)
6 ov.5 . . . . . 6 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
76fnoprab 5631 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
8 eleq1 2116 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
98anbi1d 446 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝑦𝑆)))
10 eleq1 2116 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
1110anbi2d 445 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
129, 11opelopabg 4032 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝐴𝑅𝐵𝑆)))
1312ibir 170 . . . . 5 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
14 fnopfvb 5242 . . . . 5 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
157, 13, 14sylancr 399 . . . 4 ((𝐴𝑅𝐵𝑆) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
16 ov.1 . . . . 5 𝐶 ∈ V
17 ov.2 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
189, 17anbi12d 450 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝑦𝑆) ∧ 𝜓)))
19 ov.3 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2011, 19anbi12d 450 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆) ∧ 𝜓) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜒)))
21 ov.4 . . . . . . 7 (𝑧 = 𝐶 → (𝜒𝜃))
2221anbi2d 445 . . . . . 6 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆) ∧ 𝜒) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2318, 20, 22eloprabg 5619 . . . . 5 ((𝐴𝑅𝐵𝑆𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2416, 23mp3an3 1232 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2515, 24bitrd 181 . . 3 ((𝐴𝑅𝐵𝑆) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
265, 25syl5bb 185 . 2 ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2726bianabs 553 1 ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  ∃!weu 1916  Vcvv 2574  cop 3405  {copab 3844   Fn wfn 4924  cfv 4929  (class class class)co 5539  {coprab 5540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937  df-ov 5542  df-oprab 5543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator