Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqd GIF version

Theorem oveqd 5557
 Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
Hypothesis
Ref Expression
oveq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
oveqd (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))

Proof of Theorem oveqd
StepHypRef Expression
1 oveq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 oveq 5546 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
31, 2syl 14 1 (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1259  (class class class)co 5540 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-uni 3609  df-br 3793  df-iota 4895  df-fv 4938  df-ov 5543 This theorem is referenced by:  oveq123d  5561  csbov12g  5572  ovmpt2dxf  5654  oprssov  5670  ofeq  5742  iseqeq2  9379
 Copyright terms: Public domain W3C validator