ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidi GIF version

Theorem ovidi 5647
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidi.2 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
ovidi.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovidi ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidi
StepHypRef Expression
1 ovidi.2 . . . 4 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
2 moanimv 1991 . . . 4 (∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑))
31, 2mpbir 138 . . 3 ∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑)
4 ovidi.3 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
53, 4ovidig 5646 . 2 (((𝑥𝑅𝑦𝑆) ∧ 𝜑) → (𝑥𝐹𝑦) = 𝑧)
65ex 112 1 ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  ∃*wmo 1917  (class class class)co 5540  {coprab 5541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-ov 5543  df-oprab 5544
This theorem is referenced by:  ovmpt4g  5651  ovi3  5665
  Copyright terms: Public domain W3C validator