Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovig GIF version

Theorem ovig 5649
 Description: The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovig.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
ovig.2 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
ovig.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovig ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovig
StepHypRef Expression
1 3simpa 912 . 2 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝐴𝑅𝐵𝑆))
2 eleq1 2116 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
3 eleq1 2116 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
42, 3bi2anan9 548 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
543adant3 935 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
6 ovig.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
75, 6anbi12d 450 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜓)))
8 ovig.2 . . . 4 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
9 moanimv 1991 . . . 4 (∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑))
108, 9mpbir 138 . . 3 ∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑)
11 ovig.3 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
127, 10, 11ovigg 5648 . 2 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜓) → (𝐴𝐹𝐵) = 𝐶))
131, 12mpand 413 1 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   ∧ w3a 896   = wceq 1259   ∈ wcel 1409  ∃*wmo 1917  (class class class)co 5539  {coprab 5540 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-ov 5542  df-oprab 5543 This theorem is referenced by:  th3q  6241  addnnnq0  6604  mulnnnq0  6605  addsrpr  6887  mulsrpr  6888
 Copyright terms: Public domain W3C validator