ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2s GIF version

Theorem ovmpt2s 5651
Description: Value of a function given by the "maps to" notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
ovmpt2s.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2s ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt2s
StepHypRef Expression
1 elex 2583 . . 3 (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V)
2 nfcv 2194 . . . . 5 𝑥𝐴
3 nfcv 2194 . . . . 5 𝑦𝐴
4 nfcv 2194 . . . . 5 𝑦𝐵
5 nfcsb1v 2909 . . . . . . 7 𝑥𝐴 / 𝑥𝑅
65nfel1 2204 . . . . . 6 𝑥𝐴 / 𝑥𝑅 ∈ V
7 ovmpt2s.3 . . . . . . . . 9 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpt21 5598 . . . . . . . . 9 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2191 . . . . . . . 8 𝑥𝐹
10 nfcv 2194 . . . . . . . 8 𝑥𝑦
112, 9, 10nfov 5562 . . . . . . 7 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2201 . . . . . 6 𝑥(𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅
136, 12nfim 1480 . . . . 5 𝑥(𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)
14 nfcsb1v 2909 . . . . . . 7 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅
1514nfel1 2204 . . . . . 6 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V
16 nfmpt22 5599 . . . . . . . . 9 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2191 . . . . . . . 8 𝑦𝐹
183, 17, 4nfov 5562 . . . . . . 7 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2201 . . . . . 6 𝑦(𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅
2015, 19nfim 1480 . . . . 5 𝑦(𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
21 csbeq1a 2887 . . . . . . 7 (𝑥 = 𝐴𝑅 = 𝐴 / 𝑥𝑅)
2221eleq1d 2122 . . . . . 6 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐴 / 𝑥𝑅 ∈ V))
23 oveq1 5546 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2070 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅))
2522, 24imbi12d 227 . . . . 5 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)))
26 csbeq1a 2887 . . . . . . 7 (𝑦 = 𝐵𝐴 / 𝑥𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
2726eleq1d 2122 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑥𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
28 oveq2 5547 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2070 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3027, 29imbi12d 227 . . . . 5 (𝑦 = 𝐵 → ((𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅) ↔ (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)))
317ovmpt4g 5650 . . . . . 6 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1117 . . . . 5 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2637 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
34 csbcomg 2900 . . . . 5 ((𝐴𝐶𝐵𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
3534eleq1d 2122 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
3634eqeq2d 2067 . . . 4 ((𝐴𝐶𝐵𝐷) → ((𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3733, 35, 363imtr4d 196 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
381, 37syl5 32 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉 → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
39383impia 1112 1 ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wcel 1409  Vcvv 2574  csb 2879  (class class class)co 5539  cmpt2 5541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator