![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovprc1 | GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | 1 | con3i 595 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
4 | 3 | ovprc 5571 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
5 | 2, 4 | syl 14 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 Vcvv 2602 ∅c0 3258 dom cdm 4371 Rel wrel 4376 (class class class)co 5543 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-xp 4377 df-rel 4378 df-dm 4381 df-iota 4897 df-fv 4940 df-ov 5546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |