Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovres GIF version

Theorem ovres 5668
 Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
Assertion
Ref Expression
ovres ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))

Proof of Theorem ovres
StepHypRef Expression
1 opelxpi 4404 . . 3 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
2 fvres 5226 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
31, 2syl 14 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
4 df-ov 5543 . 2 (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩)
5 df-ov 5543 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
63, 4, 53eqtr4g 2113 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409  ⟨cop 3406   × cxp 4371   ↾ cres 4375  ‘cfv 4930  (class class class)co 5540 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-res 4385  df-iota 4895  df-fv 4938  df-ov 5543 This theorem is referenced by:  ovresd  5669  oprssov  5670  ofmresval  5751  elq  8654
 Copyright terms: Public domain W3C validator