![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4338. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7120 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 7149 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 416 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 (class class class)co 5537 ℂcc 7030 1c1 7033 + caddc 7035 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 ax-1cn 7120 ax-addcl 7123 |
This theorem is referenced by: xp1d2m1eqxm1d2 8339 nneo 8520 zeo 8522 zeo2 8523 zesq 9677 facndiv 9752 faclbnd 9754 faclbnd6 9757 odd2np1 10406 |
Copyright terms: Public domain | W3C validator |