![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > permnn | GIF version |
Description: The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
Ref | Expression |
---|---|
permnn | ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 9243 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → 𝑅 ∈ ℕ0) | |
2 | 1 | faccld 9796 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℕ) |
3 | fznn0sub 9187 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁 − 𝑅) ∈ ℕ0) | |
4 | 3 | faccld 9796 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (!‘(𝑁 − 𝑅)) ∈ ℕ) |
5 | 4, 2 | nnmulcld 8190 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘(𝑁 − 𝑅)) · (!‘𝑅)) ∈ ℕ) |
6 | elfz3nn0 9244 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
7 | faccl 9795 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
8 | 7 | nncnd 8156 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ) |
9 | 6, 8 | syl 14 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ) |
10 | 4 | nncnd 8156 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘(𝑁 − 𝑅)) ∈ ℂ) |
11 | 2 | nncnd 8156 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℂ) |
12 | 2 | nnap0d 8187 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) # 0) |
13 | 10, 11, 12 | divcanap4d 7986 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) = (!‘(𝑁 − 𝑅))) |
14 | 13, 4 | eqeltrd 2159 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ) |
15 | bcval2 9810 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) = ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅)))) | |
16 | bccl2 9828 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) ∈ ℕ) | |
17 | 15, 16 | eqeltrrd 2160 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅))) ∈ ℕ) |
18 | nndivtr 8183 | . 2 ⊢ ((((!‘𝑅) ∈ ℕ ∧ ((!‘(𝑁 − 𝑅)) · (!‘𝑅)) ∈ ℕ ∧ (!‘𝑁) ∈ ℂ) ∧ ((((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ ∧ ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅))) ∈ ℕ)) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | |
19 | 2, 5, 9, 14, 17, 18 | syl32anc 1178 | 1 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ‘cfv 4953 (class class class)co 5564 ℂcc 7077 0cc0 7079 · cmul 7084 − cmin 7382 / cdiv 7863 ℕcn 8142 ℕ0cn0 8391 ...cfz 9141 !cfa 9785 Ccbc 9807 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-mulrcl 7173 ax-addcom 7174 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-i2m1 7179 ax-0lt1 7180 ax-1rid 7181 ax-0id 7182 ax-rnegex 7183 ax-precex 7184 ax-cnre 7185 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-apti 7189 ax-pre-ltadd 7190 ax-pre-mulgt0 7191 ax-pre-mulext 7192 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-if 3370 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-po 4080 df-iso 4081 df-iord 4150 df-on 4152 df-ilim 4153 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-recs 5975 df-frec 6061 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-sub 7384 df-neg 7385 df-reap 7778 df-ap 7785 df-div 7864 df-inn 8143 df-n0 8392 df-z 8469 df-uz 8737 df-q 8822 df-rp 8852 df-fz 9142 df-iseq 9558 df-fac 9786 df-bc 9808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |