ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5 GIF version

Theorem php5 6351
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php5 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)

Proof of Theorem php5
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 = ∅ → 𝑤 = ∅)
2 suceq 4166 . . . 4 (𝑤 = ∅ → suc 𝑤 = suc ∅)
31, 2breq12d 3804 . . 3 (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅))
43notbid 602 . 2 (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅))
5 id 19 . . . 4 (𝑤 = 𝑘𝑤 = 𝑘)
6 suceq 4166 . . . 4 (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘)
75, 6breq12d 3804 . . 3 (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤𝑘 ≈ suc 𝑘))
87notbid 602 . 2 (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘))
9 id 19 . . . 4 (𝑤 = suc 𝑘𝑤 = suc 𝑘)
10 suceq 4166 . . . 4 (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘)
119, 10breq12d 3804 . . 3 (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘))
1211notbid 602 . 2 (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘))
13 id 19 . . . 4 (𝑤 = 𝐴𝑤 = 𝐴)
14 suceq 4166 . . . 4 (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴)
1513, 14breq12d 3804 . . 3 (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤𝐴 ≈ suc 𝐴))
1615notbid 602 . 2 (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴))
17 peano1 4344 . . . . 5 ∅ ∈ ω
18 peano3 4346 . . . . 5 (∅ ∈ ω → suc ∅ ≠ ∅)
1917, 18ax-mp 7 . . . 4 suc ∅ ≠ ∅
20 en0 6305 . . . 4 (suc ∅ ≈ ∅ ↔ suc ∅ = ∅)
2119, 20nemtbir 2309 . . 3 ¬ suc ∅ ≈ ∅
22 ensymb 6290 . . 3 (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅)
2321, 22mtbi 605 . 2 ¬ ∅ ≈ suc ∅
24 peano2 4345 . . . 4 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
25 vex 2577 . . . . 5 𝑘 ∈ V
2625sucex 4252 . . . . 5 suc 𝑘 ∈ V
2725, 26phplem4 6348 . . . 4 ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2824, 27mpdan 406 . . 3 (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2928con3d 571 . 2 (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘))
304, 8, 12, 16, 23, 29finds 4350 1 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1259  wcel 1409  wne 2220  c0 3251   class class class wbr 3791  suc csuc 4129  ωcom 4340  cen 6249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-br 3792  df-opab 3846  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-er 6136  df-en 6252
This theorem is referenced by:  snnen2og  6352  php5dom  6355  php5fin  6369
  Copyright terms: Public domain W3C validator