ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom GIF version

Theorem phplem4dom 6354
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano2 4345 . . . . . 6 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
21adantl 266 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
3 brdomg 6259 . . . . 5 (suc 𝐵 ∈ ω → (suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵))
42, 3syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵))
54biimpa 284 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵)
6 simpr 107 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
72ad2antrr 465 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → suc 𝐵 ∈ ω)
8 sssucid 4179 . . . . . . . 8 𝐴 ⊆ suc 𝐴
98a1i 9 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
10 simplll 493 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ∈ ω)
11 f1imaen2g 6303 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ ω) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ ω)) → (𝑓𝐴) ≈ 𝐴)
126, 7, 9, 10, 11syl22anc 1147 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1312ensymd 6293 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
14 difexg 3925 . . . . . . 7 (suc 𝐵 ∈ ω → (suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V)
157, 14syl 14 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V)
16 nnord 4361 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
17 orddif 4298 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 4695 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2010, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1fn 5120 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 266 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4180 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
2410, 23syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5259 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 397 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3089 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 df-f1 4934 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1→suc 𝐵 ↔ (𝑓:suc 𝐴⟶suc 𝐵 ∧ Fun 𝑓))
2928simprbi 264 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1→suc 𝐵 → Fun 𝑓)
30 imadif 5006 . . . . . . . . . . 11 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3129, 30syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3231adantl 266 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3327, 32eqtr4d 2091 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
34 f1f 5119 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1→suc 𝐵𝑓:suc 𝐴⟶suc 𝐵)
3534adantl 266 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓:suc 𝐴⟶suc 𝐵)
36 imassrn 4706 . . . . . . . . . . 11 (𝑓 “ suc 𝐴) ⊆ ran 𝑓
37 frn 5079 . . . . . . . . . . 11 (𝑓:suc 𝐴⟶suc 𝐵 → ran 𝑓 ⊆ suc 𝐵)
3836, 37syl5ss 2983 . . . . . . . . . 10 (𝑓:suc 𝐴⟶suc 𝐵 → (𝑓 “ suc 𝐴) ⊆ suc 𝐵)
3935, 38syl 14 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ suc 𝐴) ⊆ suc 𝐵)
4039ssdifd 3106 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
4133, 40eqsstr3d 3007 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
4220, 41eqsstrd 3006 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
43 ssdomg 6288 . . . . . 6 ((suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V → ((𝑓𝐴) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}) → (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)})))
4415, 42, 43sylc 60 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
45 endomtr 6300 . . . . 5 ((𝐴 ≈ (𝑓𝐴) ∧ (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)})) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
4613, 44, 45syl2anc 397 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
47 simpllr 494 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐵 ∈ ω)
4835, 24ffvelrnd 5330 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
49 phplem3g 6349 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5047, 48, 49syl2anc 397 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5150ensymd 6293 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
52 domentr 6301 . . . 4 ((𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5346, 51, 52syl2anc 397 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴𝐵)
545, 53exlimddv 1794 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → 𝐴𝐵)
5554ex 112 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  Vcvv 2574  cdif 2941  wss 2944  {csn 3402   class class class wbr 3791  Ord word 4126  suc csuc 4129  ωcom 4340  ccnv 4371  ran crn 4373  cima 4375  Fun wfun 4923   Fn wfn 4924  wf 4925  1-1wf1 4926  cfv 4929  cen 6249  cdom 6250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-br 3792  df-opab 3846  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-er 6136  df-en 6252  df-dom 6253
This theorem is referenced by:  php5dom  6355
  Copyright terms: Public domain W3C validator