ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phpm GIF version

Theorem phpm 6358
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols 𝑥𝑥 ∈ (𝐴𝐵) (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6346 through phplem4 6349, nneneq 6351, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
phpm ((𝐴 ∈ ω ∧ 𝐵𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem phpm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 107 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 eldifi 3094 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
3 ne0i 3258 . . . . . . . . 9 (𝑥𝐴𝐴 ≠ ∅)
42, 3syl 14 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 𝐴 ≠ ∅)
54neneqd 2241 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → ¬ 𝐴 = ∅)
65ad2antlr 466 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝐴 = ∅) → ¬ 𝐴 = ∅)
71, 6pm2.21dd 560 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝐴 = ∅) → ¬ 𝐴𝐵)
8 php5dom 6356 . . . . . . . . . 10 (𝑦 ∈ ω → ¬ suc 𝑦𝑦)
98ad2antlr 466 . . . . . . . . 9 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → ¬ suc 𝑦𝑦)
10 simplr 490 . . . . . . . . . 10 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐴 = suc 𝑦)
11 simpr 107 . . . . . . . . . . 11 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐴𝐵)
12 vex 2577 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
1312sucex 4253 . . . . . . . . . . . . . . 15 suc 𝑦 ∈ V
14 difss 3098 . . . . . . . . . . . . . . 15 (suc 𝑦 ∖ {𝑥}) ⊆ suc 𝑦
1513, 14ssexi 3923 . . . . . . . . . . . . . 14 (suc 𝑦 ∖ {𝑥}) ∈ V
16 eldifn 3095 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
1716ad3antlr 470 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → ¬ 𝑥𝐵)
18 simpllr 494 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) → 𝐵𝐴)
1918adantr 265 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵𝐴)
20 simpr 107 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐴 = suc 𝑦)
2119, 20sseqtrd 3009 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵 ⊆ suc 𝑦)
22 ssdif 3106 . . . . . . . . . . . . . . . 16 (𝐵 ⊆ suc 𝑦 → (𝐵 ∖ {𝑥}) ⊆ (suc 𝑦 ∖ {𝑥}))
23 disjsn 3460 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐵)
24 disj3 3300 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∩ {𝑥}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑥}))
2523, 24bitr3i 179 . . . . . . . . . . . . . . . . 17 𝑥𝐵𝐵 = (𝐵 ∖ {𝑥}))
26 sseq1 2994 . . . . . . . . . . . . . . . . 17 (𝐵 = (𝐵 ∖ {𝑥}) → (𝐵 ⊆ (suc 𝑦 ∖ {𝑥}) ↔ (𝐵 ∖ {𝑥}) ⊆ (suc 𝑦 ∖ {𝑥})))
2725, 26sylbi 118 . . . . . . . . . . . . . . . 16 𝑥𝐵 → (𝐵 ⊆ (suc 𝑦 ∖ {𝑥}) ↔ (𝐵 ∖ {𝑥}) ⊆ (suc 𝑦 ∖ {𝑥})))
2822, 27syl5ibr 149 . . . . . . . . . . . . . . 15 𝑥𝐵 → (𝐵 ⊆ suc 𝑦𝐵 ⊆ (suc 𝑦 ∖ {𝑥})))
2917, 21, 28sylc 60 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵 ⊆ (suc 𝑦 ∖ {𝑥}))
30 ssdomg 6289 . . . . . . . . . . . . . 14 ((suc 𝑦 ∖ {𝑥}) ∈ V → (𝐵 ⊆ (suc 𝑦 ∖ {𝑥}) → 𝐵 ≼ (suc 𝑦 ∖ {𝑥})))
3115, 29, 30mpsyl 63 . . . . . . . . . . . . 13 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵 ≼ (suc 𝑦 ∖ {𝑥}))
32 simplr 490 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝑦 ∈ ω)
332ad3antlr 470 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝑥𝐴)
3433, 20eleqtrd 2132 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝑥 ∈ suc 𝑦)
35 phplem3g 6350 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ 𝑥 ∈ suc 𝑦) → 𝑦 ≈ (suc 𝑦 ∖ {𝑥}))
3635ensymd 6294 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑥 ∈ suc 𝑦) → (suc 𝑦 ∖ {𝑥}) ≈ 𝑦)
3732, 34, 36syl2anc 397 . . . . . . . . . . . . 13 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → (suc 𝑦 ∖ {𝑥}) ≈ 𝑦)
38 domentr 6302 . . . . . . . . . . . . 13 ((𝐵 ≼ (suc 𝑦 ∖ {𝑥}) ∧ (suc 𝑦 ∖ {𝑥}) ≈ 𝑦) → 𝐵𝑦)
3931, 37, 38syl2anc 397 . . . . . . . . . . . 12 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵𝑦)
4039adantr 265 . . . . . . . . . . 11 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐵𝑦)
41 endomtr 6301 . . . . . . . . . . 11 ((𝐴𝐵𝐵𝑦) → 𝐴𝑦)
4211, 40, 41syl2anc 397 . . . . . . . . . 10 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐴𝑦)
4310, 42eqbrtrrd 3814 . . . . . . . . 9 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → suc 𝑦𝑦)
449, 43mtand 601 . . . . . . . 8 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → ¬ 𝐴𝐵)
4544ex 112 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) → (𝐴 = suc 𝑦 → ¬ 𝐴𝐵))
4645rexlimdva 2450 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → (∃𝑦 ∈ ω 𝐴 = suc 𝑦 → ¬ 𝐴𝐵))
4746imp 119 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ∃𝑦 ∈ ω 𝐴 = suc 𝑦) → ¬ 𝐴𝐵)
48 nn0suc 4355 . . . . . 6 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑦 ∈ ω 𝐴 = suc 𝑦))
4948ad2antrr 465 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝐴 = ∅ ∨ ∃𝑦 ∈ ω 𝐴 = suc 𝑦))
507, 47, 49mpjaodan 722 . . . 4 (((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
5150ex 112 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → ¬ 𝐴𝐵))
5251exlimdv 1716 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥 𝑥 ∈ (𝐴𝐵) → ¬ 𝐴𝐵))
53523impia 1112 1 ((𝐴 ∈ ω ∧ 𝐵𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  w3a 896   = wceq 1259  wex 1397  wcel 1409  wne 2220  wrex 2324  Vcvv 2574  cdif 2942  cin 2944  wss 2945  c0 3252  {csn 3403   class class class wbr 3792  suc csuc 4130  ωcom 4341  cen 6250  cdom 6251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-er 6137  df-en 6253  df-dom 6254
This theorem is referenced by:  phpelm  6359
  Copyright terms: Public domain W3C validator