Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn GIF version

Theorem pitonn 7130
 Description: Mapping from N to ℕ. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Distinct variable groups:   𝑁,𝑙,𝑢   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem pitonn
Dummy variables 𝑤 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3590 . . . . . . . . . . . . . . 15 (𝑤 = 1𝑜 → ⟨𝑤, 1𝑜⟩ = ⟨1𝑜, 1𝑜⟩)
21eceq1d 6229 . . . . . . . . . . . . . 14 (𝑤 = 1𝑜 → [⟨𝑤, 1𝑜⟩] ~Q = [⟨1𝑜, 1𝑜⟩] ~Q )
32breq2d 3817 . . . . . . . . . . . . 13 (𝑤 = 1𝑜 → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q ))
43abbidv 2200 . . . . . . . . . . . 12 (𝑤 = 1𝑜 → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q })
52breq1d 3815 . . . . . . . . . . . . 13 (𝑤 = 1𝑜 → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢))
65abbidv 2200 . . . . . . . . . . . 12 (𝑤 = 1𝑜 → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢})
74, 6opeq12d 3598 . . . . . . . . . . 11 (𝑤 = 1𝑜 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩)
87oveq1d 5578 . . . . . . . . . 10 (𝑤 = 1𝑜 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
98opeq1d 3596 . . . . . . . . 9 (𝑤 = 1𝑜 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
109eceq1d 6229 . . . . . . . 8 (𝑤 = 1𝑜 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1110opeq1d 3596 . . . . . . 7 (𝑤 = 1𝑜 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1211eleq1d 2151 . . . . . 6 (𝑤 = 1𝑜 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
1312imbi2d 228 . . . . 5 (𝑤 = 1𝑜 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
14 opeq1 3590 . . . . . . . . . . . . . . 15 (𝑤 = 𝑘 → ⟨𝑤, 1𝑜⟩ = ⟨𝑘, 1𝑜⟩)
1514eceq1d 6229 . . . . . . . . . . . . . 14 (𝑤 = 𝑘 → [⟨𝑤, 1𝑜⟩] ~Q = [⟨𝑘, 1𝑜⟩] ~Q )
1615breq2d 3817 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q ))
1716abbidv 2200 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q })
1815breq1d 3815 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢))
1918abbidv 2200 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢})
2017, 19opeq12d 3598 . . . . . . . . . . 11 (𝑤 = 𝑘 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩)
2120oveq1d 5578 . . . . . . . . . 10 (𝑤 = 𝑘 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
2221opeq1d 3596 . . . . . . . . 9 (𝑤 = 𝑘 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
2322eceq1d 6229 . . . . . . . 8 (𝑤 = 𝑘 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
2423opeq1d 3596 . . . . . . 7 (𝑤 = 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
2524eleq1d 2151 . . . . . 6 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
2625imbi2d 228 . . . . 5 (𝑤 = 𝑘 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
27 opeq1 3590 . . . . . . . . . . . . . . 15 (𝑤 = (𝑘 +N 1𝑜) → ⟨𝑤, 1𝑜⟩ = ⟨(𝑘 +N 1𝑜), 1𝑜⟩)
2827eceq1d 6229 . . . . . . . . . . . . . 14 (𝑤 = (𝑘 +N 1𝑜) → [⟨𝑤, 1𝑜⟩] ~Q = [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q )
2928breq2d 3817 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1𝑜) → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q ))
3029abbidv 2200 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1𝑜) → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q })
3128breq1d 3815 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1𝑜) → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢))
3231abbidv 2200 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1𝑜) → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢})
3330, 32opeq12d 3598 . . . . . . . . . . 11 (𝑤 = (𝑘 +N 1𝑜) → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩)
3433oveq1d 5578 . . . . . . . . . 10 (𝑤 = (𝑘 +N 1𝑜) → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
3534opeq1d 3596 . . . . . . . . 9 (𝑤 = (𝑘 +N 1𝑜) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
3635eceq1d 6229 . . . . . . . 8 (𝑤 = (𝑘 +N 1𝑜) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
3736opeq1d 3596 . . . . . . 7 (𝑤 = (𝑘 +N 1𝑜) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3837eleq1d 2151 . . . . . 6 (𝑤 = (𝑘 +N 1𝑜) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
3938imbi2d 228 . . . . 5 (𝑤 = (𝑘 +N 1𝑜) → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
40 opeq1 3590 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ⟨𝑤, 1𝑜⟩ = ⟨𝑁, 1𝑜⟩)
4140eceq1d 6229 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → [⟨𝑤, 1𝑜⟩] ~Q = [⟨𝑁, 1𝑜⟩] ~Q )
4241breq2d 3817 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q ))
4342abbidv 2200 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q })
4441breq1d 3815 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢))
4544abbidv 2200 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢})
4643, 45opeq12d 3598 . . . . . . . . . . 11 (𝑤 = 𝑁 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩)
4746oveq1d 5578 . . . . . . . . . 10 (𝑤 = 𝑁 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
4847opeq1d 3596 . . . . . . . . 9 (𝑤 = 𝑁 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
4948eceq1d 6229 . . . . . . . 8 (𝑤 = 𝑁 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5049opeq1d 3596 . . . . . . 7 (𝑤 = 𝑁 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5150eleq1d 2151 . . . . . 6 (𝑤 = 𝑁 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
5251imbi2d 228 . . . . 5 (𝑤 = 𝑁 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
53 pitonnlem1 7127 . . . . . . . 8 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
5453eleq1i 2148 . . . . . . 7 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ 1 ∈ 𝑧)
5554biimpri 131 . . . . . 6 (1 ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
5655adantr 270 . . . . 5 ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
57 oveq1 5570 . . . . . . . . . . 11 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑦 + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1))
5857eleq1d 2151 . . . . . . . . . 10 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑦 + 1) ∈ 𝑧 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
5958rspccv 2707 . . . . . . . . 9 (∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
6059ad2antll 475 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
61 pitonnlem2 7129 . . . . . . . . . 10 (𝑘N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6261eleq1d 2151 . . . . . . . . 9 (𝑘N → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6362adantr 270 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6460, 63sylibd 147 . . . . . . 7 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6564ex 113 . . . . . 6 (𝑘N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6665a2d 26 . . . . 5 (𝑘N → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6713, 26, 39, 52, 56, 66indpi 6646 . . . 4 (𝑁N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6867alrimiv 1797 . . 3 (𝑁N → ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
69 eleq2 2146 . . . . 5 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
70 eleq2 2146 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
7170raleqbi1dv 2562 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
7269, 71anbi12d 457 . . . 4 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
7372ralab 2761 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
7468, 73sylibr 132 . 2 (𝑁N → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
75 nnprlu 6857 . . . . . . 7 (𝑁N → ⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
76 1pr 6858 . . . . . . 7 1PP
77 addclpr 6841 . . . . . . 7 ((⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7875, 76, 77sylancl 404 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
79 opelxpi 4422 . . . . . 6 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
8078, 76, 79sylancl 404 . . . . 5 (𝑁N → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
81 enrex 7028 . . . . . 6 ~R ∈ V
8281ecelqsi 6247 . . . . 5 (⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
8380, 82syl 14 . . . 4 (𝑁N → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
84 0r 7041 . . . 4 0RR
85 opelxpi 4422 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ) ∧ 0RR) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
8683, 84, 85sylancl 404 . . 3 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
87 elintg 3664 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8886, 87syl 14 . 2 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8974, 88mpbird 165 1 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103  ∀wal 1283   = wceq 1285   ∈ wcel 1434  {cab 2069  ∀wral 2353  ⟨cop 3419  ∩ cint 3656   class class class wbr 3805   × cxp 4389  (class class class)co 5563  1𝑜c1o 6078  [cec 6191   / cqs 6192  Ncnpi 6576   +N cpli 6577   ~Q ceq 6583
 Copyright terms: Public domain W3C validator