ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 GIF version

Theorem pitonnlem1 7646
Description: Lemma for pitonn 7649. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Distinct variable group:   𝑢,𝑙

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 7621 . 2 1 = ⟨1R, 0R
2 df-1r 7533 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
3 df-i1p 7268 . . . . . . . 8 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4 df-1nqqs 7152 . . . . . . . . . . 11 1Q = [⟨1o, 1o⟩] ~Q
54breq2i 3932 . . . . . . . . . 10 (𝑙 <Q 1Q𝑙 <Q [⟨1o, 1o⟩] ~Q )
65abbii 2253 . . . . . . . . 9 {𝑙𝑙 <Q 1Q} = {𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }
74breq1i 3931 . . . . . . . . . 10 (1Q <Q 𝑢 ↔ [⟨1o, 1o⟩] ~Q <Q 𝑢)
87abbii 2253 . . . . . . . . 9 {𝑢 ∣ 1Q <Q 𝑢} = {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}
96, 8opeq12i 3705 . . . . . . . 8 ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩
103, 9eqtri 2158 . . . . . . 7 1P = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩
1110oveq1i 5777 . . . . . 6 (1P +P 1P) = (⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)
1211opeq1i 3703 . . . . 5 ⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P
13 eceq1 6457 . . . . 5 (⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ → [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1412, 13ax-mp 5 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
152, 14eqtri 2158 . . 3 1R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
1615opeq1i 3703 . 2 ⟨1R, 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R
171, 16eqtr2i 2159 1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1331  {cab 2123  cop 3525   class class class wbr 3924  (class class class)co 5767  1oc1o 6299  [cec 6420   ~Q ceq 7080  1Qc1q 7082   <Q cltq 7086  1Pc1p 7093   +P cpp 7094   ~R cer 7097  0Rc0r 7099  1Rc1r 7100  1c1 7614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fv 5126  df-ov 5770  df-ec 6424  df-1nqqs 7152  df-i1p 7268  df-1r 7533  df-1 7621
This theorem is referenced by:  pitonn  7649
  Copyright terms: Public domain W3C validator