ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 GIF version

Theorem pitonnlem2 6981
Description: Lemma for pitonn 6982. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Distinct variable group:   𝐾,𝑙,𝑢

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 6955 . . . 4 1 = ⟨1R, 0R
21oveq2i 5551 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩)
3 nnprlu 6709 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
4 1pr 6710 . . . . . . . 8 1PP
5 addclpr 6693 . . . . . . . 8 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
63, 4, 5sylancl 398 . . . . . . 7 (𝐾N → (⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7 opelxpi 4404 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
86, 4, 7sylancl 398 . . . . . 6 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
9 enrex 6880 . . . . . . 7 ~R ∈ V
109ecelqsi 6191 . . . . . 6 (⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
118, 10syl 14 . . . . 5 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
12 df-nr 6870 . . . . 5 R = ((P × P) / ~R )
1311, 12syl6eleqr 2147 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
14 1sr 6894 . . . 4 1RR
15 addresr 6971 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR ∧ 1RR) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
1613, 14, 15sylancl 398 . . 3 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
172, 16syl5eq 2100 . 2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
18 pitonnlem1p1 6980 . . . . 5 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
196, 18syl 14 . . . 4 (𝐾N → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
20 df-1r 6875 . . . . . 6 1R = [⟨(1P +P 1P), 1P⟩] ~R
2120oveq2i 5551 . . . . 5 ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
22 addclpr 6693 . . . . . . . 8 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
234, 4, 22mp2an 410 . . . . . . 7 (1P +P 1P) ∈ P
24 addsrpr 6888 . . . . . . . 8 ((((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
254, 24mpanl2 419 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2623, 4, 25mpanr12 423 . . . . . 6 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
276, 26syl 14 . . . . 5 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2821, 27syl5eq 2100 . . . 4 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
29 addpinq1 6620 . . . . . . . . . . 11 (𝐾N → [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q = ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q))
3029breq2d 3804 . . . . . . . . . 10 (𝐾N → (𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q𝑙 <Q ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q)))
3130abbidv 2171 . . . . . . . . 9 (𝐾N → {𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q } = {𝑙𝑙 <Q ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q)})
3229breq1d 3802 . . . . . . . . . 10 (𝐾N → ([⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢 ↔ ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q) <Q 𝑢))
3332abbidv 2171 . . . . . . . . 9 (𝐾N → {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q) <Q 𝑢})
3431, 33opeq12d 3585 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q) <Q 𝑢}⟩)
35 nnnq 6578 . . . . . . . . 9 (𝐾N → [⟨𝐾, 1𝑜⟩] ~QQ)
36 addnqpr1 6718 . . . . . . . . 9 ([⟨𝐾, 1𝑜⟩] ~QQ → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
3735, 36syl 14 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1𝑜⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
3834, 37eqtrd 2088 . . . . . . 7 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
3938oveq1d 5555 . . . . . 6 (𝐾N → (⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = ((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P))
4039opeq1d 3583 . . . . 5 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩)
4140eceq1d 6173 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
4219, 28, 413eqtr4d 2098 . . 3 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
4342opeq1d 3583 . 2 (𝐾N → ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
4417, 43eqtrd 2088 1 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  {cab 2042  cop 3406   class class class wbr 3792   × cxp 4371  (class class class)co 5540  1𝑜c1o 6025  [cec 6135   / cqs 6136  Ncnpi 6428   +N cpli 6429   ~Q ceq 6435  Qcnq 6436  1Qc1q 6437   +Q cplq 6438   <Q cltq 6441  Pcnp 6447  1Pc1p 6448   +P cpp 6449   ~R cer 6452  Rcnr 6453  0Rc0r 6454  1Rc1r 6455   +R cplr 6457  1c1 6948   + caddc 6950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-enr 6869  df-nr 6870  df-plr 6871  df-0r 6874  df-1r 6875  df-c 6953  df-1 6955  df-add 6958
This theorem is referenced by:  pitonn  6982  nntopi  7026
  Copyright terms: Public domain W3C validator