ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm1.5 GIF version

Theorem pm1.5 715
Description: Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.5 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))

Proof of Theorem pm1.5
StepHypRef Expression
1 orc 666 . . 3 (𝜑 → (𝜑𝜒))
21olcd 686 . 2 (𝜑 → (𝜓 ∨ (𝜑𝜒)))
3 olc 665 . . 3 (𝜒 → (𝜑𝜒))
43orim2i 711 . 2 ((𝜓𝜒) → (𝜓 ∨ (𝜑𝜒)))
52, 4jaoi 669 1 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  or12  716
  Copyright terms: Public domain W3C validator