ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.04 GIF version

Theorem pm2.04 80
Description: Swap antecedents. Theorem *2.04 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Sep-2012.)
Assertion
Ref Expression
pm2.04 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))

Proof of Theorem pm2.04
StepHypRef Expression
1 id 19 . 2 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒)))
21com23 76 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  com34  81  com45  87  bi2.04  241  equsexd  1633  sbi2v  1788  ralcom3  2494  gencbval  2619  bj-findis  10491
  Copyright terms: Public domain W3C validator