ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.27 GIF version

Theorem pm2.27 39
Description: This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 7. Theorem *2.27 of [WhiteheadRussell] p. 104. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm2.27 (𝜑 → ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.27
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21com12 30 1 (𝜑 → ((𝜑𝜓) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  pm2.43  51  com23  76  biimt  234  pm3.35  333  pm3.2im  576  mth8  589  pm2.65  595  condc  760  annimim  793  pm2.26dc  824  ax10o  1619  issref  4734  acexmidlem2  5536  findcard2  6376  findcard2s  6377  bj-inf2vnlem1  10461  bj-findis  10470
  Copyright terms: Public domain W3C validator