ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.36 GIF version

Theorem pm2.36 728
Description: Theorem *2.36 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
Assertion
Ref Expression
pm2.36 ((𝜓𝜒) → ((𝜑𝜓) → (𝜒𝜑)))

Proof of Theorem pm2.36
StepHypRef Expression
1 pm1.4 656 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 pm2.38 727 . 2 ((𝜓𝜒) → ((𝜓𝜑) → (𝜒𝜑)))
31, 2syl5 32 1 ((𝜓𝜒) → ((𝜑𝜓) → (𝜒𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 639
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640
This theorem depends on definitions:  df-bi 114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator