ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.38 GIF version

Theorem pm2.38 750
Description: Theorem *2.38 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
Assertion
Ref Expression
pm2.38 ((𝜓𝜒) → ((𝜓𝜑) → (𝜒𝜑)))

Proof of Theorem pm2.38
StepHypRef Expression
1 id 19 . 2 ((𝜓𝜒) → (𝜓𝜒))
21orim1d 734 1 ((𝜓𝜒) → ((𝜓𝜑) → (𝜒𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm2.36  751  pm2.37  752
  Copyright terms: Public domain W3C validator