 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.13dc GIF version

Theorem pm3.13dc 877
 Description: Theorem *3.13 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.14 680, holds for all propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
Assertion
Ref Expression
pm3.13dc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))

Proof of Theorem pm3.13dc
StepHypRef Expression
1 dcn 757 . . 3 (DECID 𝜑DECID ¬ 𝜑)
2 dcn 757 . . 3 (DECID 𝜓DECID ¬ 𝜓)
3 dcor 854 . . 3 (DECID ¬ 𝜑 → (DECID ¬ 𝜓DECID𝜑 ∨ ¬ 𝜓)))
41, 2, 3syl2im 38 . 2 (DECID 𝜑 → (DECID 𝜓DECID𝜑 ∨ ¬ 𝜓)))
5 pm3.11dc 875 . 2 (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))))
6 con1dc 764 . 2 (DECID𝜑 ∨ ¬ 𝜓) → ((¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓)) → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))
74, 5, 6syl6c 64 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ∨ wo 639  DECID wdc 753 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640 This theorem depends on definitions:  df-bi 114  df-dc 754 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator