ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.22 GIF version

Theorem pm3.22 256
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Assertion
Ref Expression
pm3.22 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm3.22
StepHypRef Expression
1 pm3.21 255 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
21imp 119 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by:  ancom  257  ancom2s  508  ancom1s  511  eupickb  1997  enq0sym  6588  bj-peano4  10467
  Copyright terms: Public domain W3C validator