ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.3 GIF version

Theorem pm3.3 252
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm3.3
StepHypRef Expression
1 id 19 . 2 (((𝜑𝜓) → 𝜒) → ((𝜑𝜓) → 𝜒))
21expd 249 1 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  impexp  254  pm3.37  799  pm4.79dc  820  sbi2v  1788
  Copyright terms: Public domain W3C validator