ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.42 GIF version

Theorem pm3.42 319
Description: Theorem *3.42 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.42 ((𝜓𝜒) → ((𝜑𝜓) → 𝜒))

Proof of Theorem pm3.42
StepHypRef Expression
1 simpr 107 . 2 ((𝜑𝜓) → 𝜓)
21imim1i 58 1 ((𝜓𝜒) → ((𝜑𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator